A principal component analysis and entropy value calculate method in SPSS for MDLAP model
نویسندگان
چکیده
In the analysis of MDLAP, this paper creatively combines the mathematical optimization model of cost-based multiple targets distribution location problem into a logistics location selection decision model with a multiple influencing factors, then put forward the method of data standardization processing, entropy weight, the method of principal component analysis and mathematical expressions to solve this model. Finally using SPSS statistical analysis software of the decision model are analyzed weighted linear regression method of influencing factors which based on entropy, similarity analysis system clustering method based on analysis of candidate services area, analysis effect comprehensive scoring factors of service area with factor analysis and principal component regression method , finally culminating in the service area of the 97 candidate in Shandong Province selected 10 service area of Weifang, Qingdao, Pingdu, Qufu as the optimal logistics center development area.
منابع مشابه
Combined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملPrioritizing Effective Factors in the Making Ethical Organizations by Using Combined Method of Interpretative Structural Modeling (ISM) and Principal Component Analysis (PCA)
Nowadays Organizations consider ethical principles in the business environment as an advantage and seek to strengthen it. This requires a coherent, interactive and cognitive understanding of the parts of internal and external environment of organization, which leads to the realization of the rights of the beneficiaries of the organization. The purpose of this paper is prioritize the factors in...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملUsing PCA with LVQ, RBF, MLP, SOM and Continuous Wavelet Transform for Fault Diagnosis of Gearboxes
A new method based on principal component analysis (PCA) and artificial neural networks (ANN) is proposed for fault diagnosis of gearboxes. Firstly the six different base wavelets are considered, in which three are from real valued and other three from complex valued. Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared...
متن کامل